Challenges to Building Clean Coal Plant in Western U.S.

Ashok Rao, Ph.D.

Advanced Power and Energy Program

University of California, Irvine

The Challenge

- Not so much whether Clean Coal Technology Available
- But What is Appropriate Technology?
 - IGCC or Boiler / Type
 - Which Technology Results in
 - Lower COE
 - While in Environmental Compliance Consistent with "Design Criteria"
 - If CO₂ Capture Required
 - Finding Home for Captured CO₂
- Need Design Criteria for "Clean" Coal Plant
 - Define Environmental Criteria How Clean is "Clean"?
 - Define Economic Criteria How Much are we Willing to Pay?

IGCC or Boiler?

- Answer not Simple
- Depends Primarily on <u>Emissions Limits</u> / Coal / Location
 - Coal
 - Rank (Black Mesa or Utah Coals vs. PRB Coal)
 - Ash Content & its Properties
 - Moisture Content (especially for Slurry Fed Gasifiers)
 - Location
 - Elevation
 - Availability of Water
 - Mode of Heat Rejection
- & Whether Market Exists for a Coproduct
 - Example: H₂
- Difficult to Generalize
 - IGCC on Higher Rank Coals (or Lower Rank Coals + Pet Coke)
 - Costs Generally Competitive
 - If Environmental Constrains Very Stringent
 - Coproduction, a Special Advantage for IGCC

IGCC Technology

- Gasification Technologies Suitable to Higher Rank Coals
 - GE & E-Gas
 - Sensitive to Specific High Rank Coal, e.g., Pittsburg 8 vs Illinois 6
 - If Plant Built in Nevada
 - Transport Black Mesa as Slurry
 - Natural Fit for Slurry Fed Gasifiers
 - Shell
 - Design Improvements being made to Reduce Costs
 - BGL
 - Limited Experience
- Gasification Technologies Suitable to Low Rank Coals
 - Lurgi
 - Complex due to Tars/Oils & Can Handle Limited Amounts of Fines
 - HT Winkler
 - Limited Experience
 - ATR
 - Very Promising
 - Southern Company & Orlando Utilities Commission to build 285 MW IGCC near Orlando, Florida
- Timing of Project Future Looks Good
 - Cost Reduction by Developing Standard Plant Designs
 - Improved Performance with Higher Firing Temp GTs (H technology / Reheat GT)
 - Increasing Power Block Efficiency Reduces Cost (\$/kW) of IGCC

IGCC Relative Efficiency Trends (% Coal HHV)

IGCC Environmental Signature

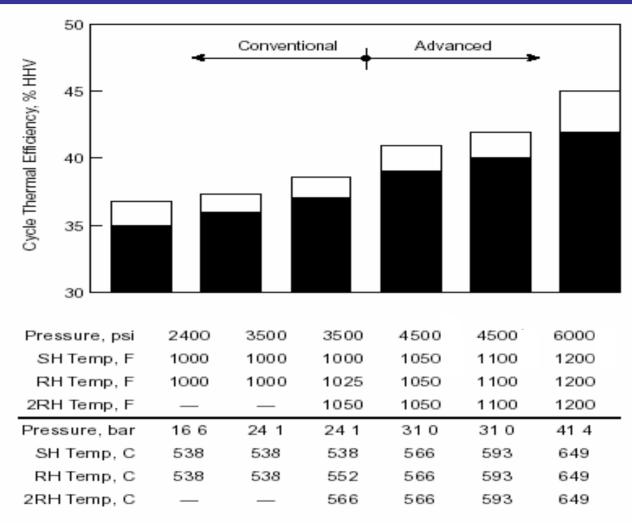
- Sulfur
 - Captured as Saleable Byproduct
 - Capture > 99% w/o Significant Increase in Cost
- Heavy Metals
 - Commercially Proven for Capture of Hg & As (> 95%)
 - Same Sulfided Activated Carbon Expected to Capture Se & Cd
 - Cost Low due to Small Volume of Gas Treated
- NOx
 - 15 ppmV (15% O₂, Dry) w/o SCR
 - Ultra Low with SCR Negishi Plant in Japan
- Particulate Emissions
 - Wabash IGCC < 0.012 lb/MMBtu or 0.088 lb/MWh

IGCC Environmental Signature (Cont'd)

- Water Usage
 - Lower Consumption
 - Performance Degradation Lower when Air-cooled
- Solids Waste
 - Less Produced (Compared to FGD with Limestone)
 - Vitrified Form
- CO₂ Capture
 - Low Incremental Cost of Capture
 - Captured from Syngas with high CO₂ Partial Pressure
 - Bulk of CO₂ regenerated at High Pressure
 - Captured in AGR for Syngas Sulfur Removal

Boiler Technology

Pulverized Coal


- Supercritical Units Commercialized about 45 years ago
- A Mature Technology
 - Current Availabilities ≈ Sub-critical Units
- Typically Lower Plant Cost than IGCC
 - Especially for Lower Rank Coals
 - But Need Detailed Analysis in "Clean Coal" Applications

Fluidized Bed

- Currently Offered Max Size: 300 to 400 MW
- Larger Sizes being Investigated
 - Application of Super-critical Steam Cycle Possible
 - Lower & Uniform Bed Temp Helpful to Water Wall Enclosing Bed
 - But Increases Heat Transfer Surface
- Suitable for Difficult to Burn Fuels
- Fuel Flexibility
 - Brown Coals
 - Anthracite
- Generally Lower Environmental Emissions Compared to PC
 - Lower NOx due to Lower Temp
 - Upto 98% In-bed Sulfur Capture with Limestone

Boiler Plant Efficiency Trends (Source: B&W)

- 1. Current State-of-the-Art: 290 bar / 580°C / 600°C or 4200 psi / 1080°F / 1110°F
- 2. European Thermie Project: 375 bar / 700°C or 5440 psi / 1290°F; η_{HHV} > 45%; 2008 Demonstration

Boiler Cleanup Technologies also Evolving

- FGD
 - CANSOLV
 - Captured / Regenerated as SO₂ by Amine Solvent
 - Produce H₂SO₄ as Saleable Product
- NOx
 - BOC's LOTOx
 - O₃ Oxidizes NOx to Soluble Species (N₂O₃ & N₂O₅)
- Particulates
 - EPRI's COHPAC
 - Combination of ESP and Baghouse
- Hg
 - Alstom's Filsorption
 - Extensive Experience in Waste to Energy Plants
 - Removes > 85% of Elemental Hg & > 90% Oxidized Hg
 - EPRI's TOXECON
 - Demonstrated on Existing Coal Plants
 - Removed ~ 90% of Hg
- CO₂ Capture
 - Amine Wash of Flue Gas
 - Limited Experience on Coal derived Flue Gas

Summary

No Simple Answer for Picking Appropriate Technology

- "Clean Coal Technologies" are Available
- IGCC is Very Clean
- Challenge: How Much are we willing to Pay

Necessary 1st Steps

- Establish Design Criteria
- Perform Detailed Techno-Economic Evaluation
 - Specific Coal(s), Site(s) & Environmental Constraints
 - Factor in Lessons Learnt into Conceptual Design
 - Compare Technology Options on Consistent Basis
 - With Similar Commercial Guarantees
 - Experience with / Applicability to Particular Coal & its Trace Components
 - Assess Commercial Experience in Integrated Designs
 - Compatibility of Downstream Unit with Upstream Unit

